Determinacy, measure, toasts, and the shift graph

Zoltán Vidnyánszky

California Institute of Technology

McGill DDC Seminar

On Borel combinatorics

Assume that <u>G</u> is a graph and V(G) is endowed with a Borel structure. $n \in \{1, 2, ..., \aleph_0\}$ is equipped with the trivial Borel structure.

On Borel combinatorics

Assume that G is a graph and V(G) is endowed with a Borel structure. $n \in \{1, 2, ..., \aleph_0\}$ is equipped with the trivial Borel structure.

Can talk about:

Borel graphs: G is a Borel graph is G is Borel a subset of $V(G) \times V(G)$.

Borel chromatic numbers: minimal *n* for which *G* has a Borel *n*-coloring. Notation: $\chi_B(G)$.

Borel homomorphisms: if G, H are Borel graphs, a Borel homomorphism is a Borel map $f: V(G) \to V(H)$ that takes edges to edges. Notation: $G \leq_B H$.

Let us denote by $[S]^{\mathbb{N}}$ the collection of countably infinite subsets of the set *S*.

Let us denote by $[S]^{\mathbb{N}}$ the collection of countably infinite subsets of the set S.

Theorem. (Galvin-Prikry) Let $[\mathbb{N}]^{\mathbb{N}} = B_0 \cup \cdots \cup B_n$ be a Borel covering. Then there exists some $i \leq n$ and $A \subset \mathbb{N}$ infinite with $[A]^{\mathbb{N}} \subset B_i$.

Let us denote by $[S]^{\mathbb{N}}$ the collection of countably infinite subsets of the set *S*.

Theorem. (Galvin-Prikry) Let $[\mathbb{N}]^{\mathbb{N}} = B_0 \cup \cdots \cup B_n$ be a Borel covering. Then there exists some $i \leq n$ and $A \subset \mathbb{N}$ infinite with $[A]^{\mathbb{N}} \subset B_i$. Let $S : [\mathbb{N}]^{\mathbb{N}} \to [\mathbb{N}]^{\mathbb{N}}$ be the *shift-map*, defined by Define the shift-graph G_s by letting xG_sy iff y = S(x). G_s Acyclic $12(4G_s, 3)$ (214, 6), -3 (416, -3) (41612,

Theorem. (Kechris-Solecki-Todorčević) $\chi_B(G_S) = \aleph_0$. Pf: IF C: ENJ^N → n is BOREL THEN (C⁻¹(1:7)) i = u is A BOREL COUERING OF ENJ^N AND BY G-P J A EENJ^N $[A]^{N} \leq C^{-1}(\{i\}) \Longrightarrow L(A) = C(S(A)) = i$

 $KST: \mathcal{T}_{\mathcal{B}}(G) > \mathcal{T}_{\mathcal{S}}' \iff G_{\mathcal{S}} \leq B G$

Theorem. (Kechris-Solecki-Todorčević) $\chi_B(G_S) = \aleph_0$.

Question. Assume that \mathcal{G} is an acyclic Borel graph with $\chi_B(\mathcal{G}) \geq \aleph_0$. Is $\mathcal{G}_S \leq_B \mathcal{G}$?

Theorem. (Kechris-Solecki-Todorčević) $\chi_B(G_S) = \aleph_0$.

Question. Assume that \mathcal{G} is an acyclic Borel graph with $\chi_{\mathcal{B}}(\mathcal{G}) \geq \aleph_0$. Is $\mathcal{G}_S \leq_{\mathcal{B}} \mathcal{G}$?

Theorem. (Pequignot) No.

Theorem. (Kechris-Solecki-Todorčević) $\chi_B(G_S) = \aleph_0$.

Question. Assume that \mathcal{G} is an acyclic Borel graph with $\chi_B(\mathcal{G}) \geq \aleph_0$. Is $\mathcal{G}_S \leq_B \mathcal{G}$?

Theorem. (Pequignot) No.

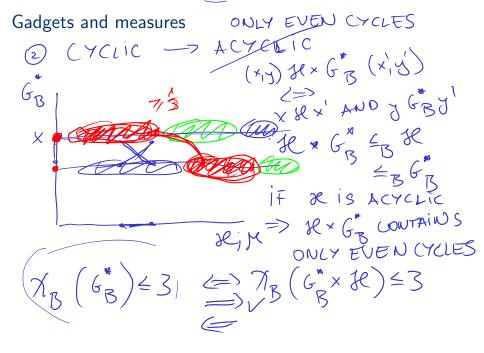
Theorem. (Todorčević-V) There is no meaningful characterization of Borel graphs with Borel chromatic number < n, for each $n \in \{4, \ldots, \aleph_0\}$.

Theorem. (Kechris-Solecki-Todorčević) $\chi_B(G_S) = \aleph_0$.

Question. Assume that \mathcal{G} is an acyclic Borel graph with NB (B) NO CO Z SS $\chi_B(\mathcal{G}) \geq \aleph_0$. Is $\mathcal{G}_S \leq_B \mathcal{G}$? Theorem. (Pequignot) No. Theorem. (Todorčević-V) There is no meaningful characterization of Borel graphs with Borel chromatic number $\langle n \rangle$ for each $n \in \{4,\ldots,\aleph_0\}.$ BESNT In fact, the set of such graphs is Σ_2^1 -complete. J DEF'N J Y Z DEF'N V J

Gadgets and measures

Theorem. (Grebík-V.) There is some *d* for which acyclic *d*-regular Borel graphs with Borel chromatic number \leq 3 form a Σ_2^1 -complete set. BOUNDED (MAYBE (YCLIC) UNBOUNDE D 42



Gadgets and measures

Theorem. There exists a *d*, an acyclic *d*-regular Borel graph \mathcal{H} on a probability measure space (X, μ) such that for every $B \subseteq X$ Borel with $\mu(B) \geq \frac{1}{3}$ we have $\mu(N_{\mathcal{H}}(B)) > \frac{2}{3}$.

Gadgets and measures

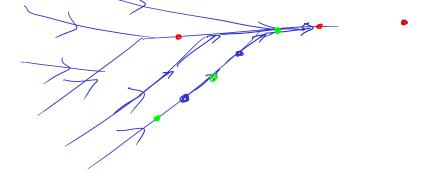
Theorem. There exists a d, an acyclic *d*-regular Borel graph \mathcal{H} on a probability measure space (X, μ) such that for every $B \subseteq X$ Borel with $\mu(B) \ge \frac{1}{3}$ we have $\mu(N_{\mathcal{H}}(B)) > \frac{2}{3}$. In particular, if $B, B' \subseteq X$ are measurable and with $\mu(B), \mu(B') \ge \frac{1}{2}$ then there exist $z \in B$ and $z' \in B'$ that are adjacent in \mathcal{H} .

(MARKS) J & 3 REGULAR ACYCLIC BOREL GRAPH WITH NB(S)=4

Theorem. (Todorčević-V) There is no meaningful characterization of Borel graphs with Borel chromatic number at most n, for each $n \in \{3, \ldots, \aleph_0\}$: such graphs form a Σ_2^1 -complete set.

Theorem. (Todorčević-V) There is no meaningful characterization of Borel graphs with Borel chromatic number at most n, for each $n \in \{3, ..., \aleph_0\}$: such graphs form a Σ_2^1 -complete set.

(di Prisco-Todorčević-Miller) Assume that $B \subset [\mathbb{N}]^{\mathbb{N}}$ is a Borel set, and for some \mathcal{G}_{S} -independent Borel set B', for each $x \in B$ there is n with $S^{n}(x) \in \mathcal{B}'$. Call such B' and *independent hitting set*.



Theorem. (Todorčević-V) There is no meaningful characterization of Borel graphs with Borel chromatic number at most n, for each $n \in \{3, ..., \aleph_0\}$: such graphs form a Σ_2^1 -complete set.

(di Prisco-Todorčević-Miller) Assume that $B \subset [\mathbb{N}]^{\mathbb{N}}$ is a Borel set, and for some \mathcal{G}_S -independent Borel set B', for each $x \in B$ there is n with $S^n(x) \in B'$. Call such B' and *independent hitting set*. Then $\chi_B(\mathcal{G}_S \upharpoonright B) \leq 3$.

Theorem. (Todorčević-V) There is no meaningful characterization of Borel graphs with Borel chromatic number at most n, for each $n \in \{3, \ldots, \aleph_0\}$: such graphs form a Σ_2^1 -complete set.

(di Prisco-Todorčević-Miller) Assume that $B \subset [\mathbb{N}]^{\mathbb{N}}$ is a Borel set, and for some \mathcal{G}_S -independent Borel set B', for each $x \in B$ there is n with $S^n(x) \in B'$. Call such B' and *independent hitting set*. Then $\chi_B(\mathcal{G}_S \upharpoonright B) \leq 3$.

A set $S \subset (\mathbb{N})^{\mathbb{N}}$ is called *non-dominating* if there is an $f \in [\mathbb{N}]^{\mathbb{N}}$ such that for each $g \in S$ we have $|\{n : g(n) \le f(n)\}| = \aleph_0$.

Theorem. (Todorčević-V) There is no meaningful characterization of Borel graphs with Borel chromatic number at most n, for each $n \in \{3, ..., \aleph_0\}$: such graphs form a Σ_2^1 -complete set.

(di Prisco-Todorčević-Miller) Assume that $B \subset [\mathbb{N}]^{\mathbb{N}}$ is a Borel set, and for some \mathcal{G}_S -independent Borel set B', for each $x \in B$ there is n with $S^n(x) \in B'$. Call such B' and *independent hitting set*. Then $\chi_B(\mathcal{G}_S \upharpoonright B) \leq 3$.

A set $S \subset [\mathbb{N}]^{\mathbb{N}}$ is called *non-dominating* if there is an $f \in [\mathbb{N}]^{\mathbb{N}}$ such that for each $g \in S$ we have $|\{n : g(n) \leq f(n)\}| = \aleph_0$.

Non-dominating Borel sets admit an independent hitting set.

Theorem. (Todorčević-V) There is no meaningful characterization of Borel graphs with Borel chromatic number at most *n*, for each $n \in \{3, ..., \aleph_0\}$: such graphs form a Σ_2^1 -complete set.

(di Prisco-Todorčević-Miller) Assume that $B \subset [\mathbb{N}]^{\mathbb{N}}$ is a Borel set, and for some \mathcal{G}_S -independent Borel set B', for each $x \in B$ there is n with $S^n(x) \in B'$. Call such B' and *independent hitting set*. Then $\chi_B(\mathcal{G}_S \upharpoonright B) \leq 3$.

A set $S \subset [\mathbb{N}]^{\mathbb{N}}$ is called *non-dominating* if there is an $f \in [\mathbb{N}]^{\mathbb{N}}$ such that for each $g \in S$ we have $|\{n : g(n) \leq f(n)\}| = \aleph_0$.

Non-dominating Borel sets admit an independent hitting set.

Theorem. If a Borel coloring problem is solvable on non-dominating Borel sets, and not solvable on $[\mathbb{N}]^{\mathbb{N}}$, then the Borel subgraphs of \mathcal{G}_{S} on which it is solvable form a Σ_{2}^{1} -complete.

Theorem. (B-C-G-G-R-V) Let \mathcal{H} be a locally countable Borel graph. Then we have $3 \cdot \mathcal{R} = \mathcal{L}$

 $\chi_{\mathsf{w}\Delta_2^1}(\mathcal{H}) > 3 \; \Rightarrow \; \chi_B(\operatorname{Hom}(T_3, \mathcal{H})) > 3.$

Theorem. (B-C-G-G-R-V) Let \mathcal{H} be a locally countable Borel graph. Then we have

$$\chi_{w\Delta_2^1}(\mathcal{H}) > 3 \Rightarrow \chi_B(Hom(T_3,\mathcal{H})) > 3.$$

$$\chi_B(\mathcal{H}) \leq 3 \Rightarrow \chi_B(Hom(T_3,\mathcal{H})) \leq 3.$$

Theorem. (B-C-G-G-R-V) Let \mathcal{H} be a locally countable Borel graph. Then we have

$$\chi_{w\Delta_{2}^{1}}(\mathcal{H}) > 3 \implies \chi_{B}(Hom(T_{3},\mathcal{H})) > 3.$$

$$\chi_{B}(\mathcal{H}) \leq 3 \implies \chi_{B}(Hom(T_{3},\mathcal{H})) \leq 3.$$

$$\gamma_{\mathcal{K}}(\mathcal{C}_{S} \upharpoonright \mathcal{C}) \leq 3$$

Thus,

• If $B \subset [\mathbb{N}]^{\mathbb{N}}$ is non-dominating then $\chi_B(Hom(T_3, \mathcal{G}_S \mid B)) \leq 3$,

1-1

Theorem. (B-C-G-G-R-V) Let \mathcal{H} be a locally countable Borel graph. Then we have

$$\chi_{\underline{w\Delta_{2}^{1}}}(\mathcal{H}) > 3 \implies \chi_{B}(Hom(T_{3},\mathcal{H})) > 3.$$

$$\chi_{B}(\mathcal{H}) \leq 3 \implies \chi_{B}(Hom(T_{3},\mathcal{H})) \leq 3.$$

Thus,

■ If
$$B \subset [\mathbb{N}]^{\mathbb{N}}$$
 is non-dominating then
 $\chi_B(Hom(T_3, \mathcal{G}_S \upharpoonright B)) \leq 3,$

•
$$\chi_B(Hom(T_3,\mathcal{G}_S)) = 4.$$

Theorem. (B-C-G-G-R-V) Let \mathcal{H} be a locally countable Borel graph. Then we have

$$\chi_{W\Delta_2^1}(\mathcal{H}) > 3 \Rightarrow \chi_B(Hom(T_3,\mathcal{H})) > 3.$$

$$\chi_B(\mathcal{H}) \leq 3 \Rightarrow \chi_B(Hom(T_3,\mathcal{H})) \leq 3.$$

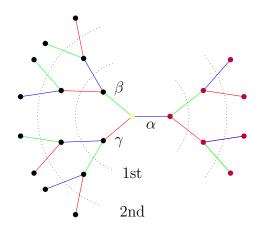
Thus,

• If $B \subset [\mathbb{N}]^{\mathbb{N}}$ is non-dominating then $\chi_B(Hom(T_3, \mathcal{G}_S \upharpoonright B)) \leq 3,$

•
$$\chi_B(Hom(T_3,\mathcal{G}_S)) = 4.$$

Theorem. 3-regular acyclic Borel graphs with Borel chromatic number \leq 3 form a Σ_2^1 -complete set.

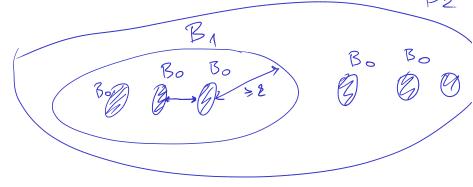
Marks' method



Toasts

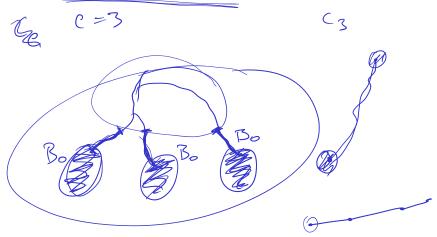
Let \mathcal{G} be a locally countable Borel graph and k. A *k-toast* is a sequence of Borel set $B_0 \subset B_1 \subset \cdots$ with

- $\bullet \bigcup_i B_i = V(G),$
- $\mathcal{G} \upharpoonright B_i$ has finite connected components,
- if S_i ≠ S_j are connected components of some G ↾ B_i and G ↾ B_j then the distance of their boundaries is at least k.

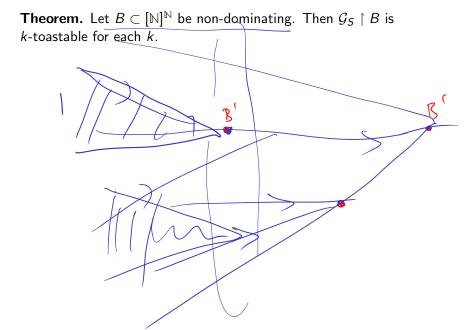


Toasts

Theorem. Let l be odd. Then a k-toastable acyclic Borel graph admits a Borel homomorphism into C_l for every large enough k.



Toasts and non-dominating sets



Toasts and non-dominating sets

Theorem. Let $B \subset [\mathbb{N}]^{\mathbb{N}}$ be non-dominating. Then $\mathcal{G}_S \upharpoonright B$ is *k*-toastable for each *k*.

Theorem. Toastable subgraphs of \mathcal{G}_S form a Σ_2^1 -complete set.

Theorem. (Hell-Nesetřil) Let H be a finite graph. Deciding whether a finite graph G admits a homomorphism into H is $-\Sigma_2^{1-1}$ complete. NP- WARCETE, UNIESS H is BEPARTIE

Theorem. (Hell-Nesetřil) Let H be a finite graph. Deciding whether a finite graph G admits a homomorphism into H is Σ_2^1 -complete.

Theorem. (Thornton) Let H be a finite graph. The Borel graphs that admit a Borel homomorphism to H form a Σ_2^1 -complete set, unless H is bipartite, in which case this set is Π_1^1 .

Theorem. (Hell-Nesetřil) Let H be a finite graph. Deciding whether a finite graph G admits a homomorphism into H is Σ_2^1 -complete.

Theorem. (Thornton) Let H be a finite graph. The Borel graphs that admit a Borel homomorphism to H form a Σ_2^1 -complete set, unless H is bipartite, in which case this set is Π_1^1 .

Theorem. Assume that *H* contains an odd cycle. Then Borel subgraphs of \mathcal{G}_S that admit a Borel homomorphism to *H* form a Σ_2^1 -complete set.

Theorem. (Hell-Nesetřil) Let H be a finite graph. Deciding whether a finite graph G admits a homomorphism into H is Σ_2^1 -complete.

Theorem. (Thornton) Let H be a finite graph. The Borel graphs that admit a Borel homomorphism to H form a Σ_2^1 -complete set, unless H is bipartite, in which case this set is Π_1^1 .

Theorem. Assume that H contains an odd cycle. Then Borel subgraphs of \mathcal{G}_S that admit a Borel homomorphism to H form a Σ_2^1 -complete set.

Theorem. (C-M-S-V) There is a Borel graph *L* with $\chi_B(\mathcal{G}) > 2 \iff L \leq_B \mathcal{G}$.

Theorem. (Hell-Nesetřil) Let H be a finite graph. Deciding whether a finite graph G admits a homomorphism into H is Σ_2^1 -complete.

Theorem. (Thornton) Let H be a finite graph. The Borel graphs that admit a Borel homomorphism to H form a Σ_2^1 -complete set, unless H is bipartite, in which case this set is Π_1^1 .

Theorem. Assume that H contains an odd cycle. Then Borel subgraphs of \mathcal{G}_S that admit a Borel homomorphism to H form a Σ_2^1 -complete set.

Theorem. (C-M-S-V) There is a Borel graph L with $\chi_B(\mathcal{G}) > 2 \iff L \leq_B \mathcal{G}$. The Borel graphs that admit a Borel homomorphism to a bipartite graph form a Π_1^1 set.

Theorem. (Hell-Nesetřil) Let H be a finite graph. Deciding whether a finite graph G admits a homomorphism into H is Σ_2^1 -complete.

Theorem. (Thornton) Let H be a finite graph. The Borel graphs that admit a Borel homomorphism to H form a Σ_2^1 -complete set, unless H is bipartite, in which case this set is Π_1^1 .

Theorem. Assume that H contains an odd cycle. Then Borel subgraphs of \mathcal{G}_S that admit a Borel homomorphism to H form a Σ_2^1 -complete set.

Theorem. (C-M-S-V) There is a Borel graph L with $\chi_B(\mathcal{G}) > 2 \iff L \leq_B \mathcal{G}$. The Borel graphs that admit a Borel homomorphism to a bipartite graph form a Π_1^1 set.

Combining the above theorems, we obtain a new, algebra-free strengthening of Thornton's result.

Open questions

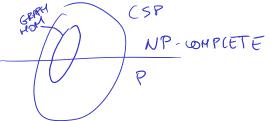
■ Is the collection of compact free subshifts of $2^{\mathbb{Z}_2 \star \mathbb{Z}_2 \star \mathbb{Z}_2}$ with Borel chromatic number ≤ 3 also Σ_2^1 -complete?

Open questions

- Is the collection of compact free subshifts of $2^{\mathbb{Z}_2 \star \mathbb{Z}_2 \star \mathbb{Z}_2}$ with Borel chromatic number ≤ 3 also Σ_2^1 -complete?
- Is toastability Σ_2^1 -complete on bounded degree acyclic Borel graphs?

Open questions

- Is the collection of compact free subshifts of $2^{\mathbb{Z}_2 \star \mathbb{Z}_2 \star \mathbb{Z}_2}$ with Borel chromatic number ≤ 3 also Σ_2^1 -complete?
- Is toastability Σ¹₂-complete on bounded degree acyclic Borel graphs?
- What are the Borel CSP's that are solvable from toasts?



Thank you for your attention!