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On Borel combinatorics

Assume that G is a graph and @is endowed with a Borel
structure. n € {1,2,...,Ng} is equipped with the trivial Borel
structure.



On Borel combinatorics

Assume that G is a graph and V/(G) is endowed with a Borel
structure. n € {1,2,...,Rg} is equipped with the trivial Borel
structure.

Can talk about:

Borel graphs: G is a Borel graph is G is Borel a subset of
V(G) x V(G).

Borel chromatic numbers: minimal n for which G has a Borel
n-coloring. Notation: xg(G).

Borel homomorphisms: if G, H are Borel graphs, a Borel

homomorphism is a Borel map f : V(G) — V/(H) that takes edges
to edges. Notation: |G <g H.\



The shift graph

Let us denote b the collection of countably infinite subsets of
the set S.



The shift graph

Let us denote by [S]N the collection of countably infinite subsets of

the set S.
Theorem. (Galvin-Prikry) Let(N]N = By U --- U B,/ be a Borel
covering. Then there exists some T—<-A-and-A infinite with

[AN C B;.




The shift graph

Let us denote by [S]N the collection of countably infinite subsets of
the set S.
Theorem. (Galvin-Prikry) Let [N]N = By U ---U B, be a Borel
covering. Then there exists some i < n and A C N infinite with
[AN C B;.
Let S [IEI}]N — [N]N be the shift-map, defined by
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The shift graph
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The shift graph

Theorem. (Kechris-Solecki-Todorevi¢) xg(Gs) = No.

Question. Assume that G is an acyclic Borel graph with
x8(G) = Ro. Is Gs <p G7?
-



The shift graph

Theorem. (Kechris-Solecki-Todorevi¢) xg(Gs) = No.

Question. Assume that G is an acyclic Borel graph with
x8(G) > No. Is Gs < G?
Theorem. (Pequignot) No.



The shift graph

Theorem. (Kechris-Solecki-Todorevi¢) xg(Gs) = No.

Question. Assume that G is an acyclic Borel graph with

x8(G) > No. Is Gs < G?

Theorem. (Pequignot) No.

Theorem. (Todor&evi¢-V) There is no meaningful characterization

of Borel graphs with Borel chromatic number < n, for each
ne {4,...,N0}.



The shift graph

Theorem. (Kechris-Solecki-Todorevi¢) xg(Gs) = No.

Question. Assume that G is an acyclic Borel graph with S
x8(9) = Ro. Is Gs <p G? g (3& 7o & w
e §

Theorem. (Pequignot) No. N 3

Theorem. (Todorevi¢-V) There is no meaningfu| characterization
of Borel graphs with Borel chromatic number < n) for each
ne {4,...,N0}.

In fact, the set of such-g




Gadgets and measures

Theorem. (Grebl’k—V.)ﬂ?here is some d for which acyclic d-regular
Borel graphs with Borel chromatic number < 3 form a

1
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Gadgets and measures

Theorem. There exists a d, an acyclic d-regular Borel graph H on
a probability measure space (X, i) such that for every B C X
Borel with 1(B) > % we have p(Ny(B)) > 2.



Gadgets and measures

Theorem. There exists a Qan, acyclic d-regular Borel gfaph H on
a probability measure space (X, i) such that for every B C
Borel with 1(B) > % we have 1(Ny(B)) > %. In particular, if

B, B’ C X are measurable and with u(B), ,u(B’) > L then there
exist z € B and z' € B’ that are adjacent in .
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Complexity on the shift

Theorem. (Todor&evi¢-V) There is no meaningful characterization
of Borel graphs with Borel chromatic number at most n, for each
n € {3,...Ng}: such graphs form a ¥3-complete set.




Complexity on the shift

Theorem. (Todor&evi¢-V) There is no meaningful characterization
of Borel graphs with Borel chromatic number at most n, for each
n€{3,...,No}: such graphs form a ¥3-complete set.

(di Prisco-Todor&evi¢-Miller) Assume that B C [N]N is a Borel set,
and for some Gs-independent Borel set B’, for each x € B there is
n with S"(x) € B'. Call such B’ and /ndependent hitting set.
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Complexity on the shift

Theorem. (Todor&evi¢-V) There is no meaningful characterization
of Borel graphs with Borel chromatic number at most n, for each
n€{3,...,No}: such graphs form a ¥3-complete set.

(di Prisco-Todor&evi¢-Miller) Assume that B C [N]N is a Borel set,
and for some Gs-independent Borel set B’, for each x € B there is
n with S"(x) € B’. Call such B’ and independent hitting set.Then
x8(Ys | B) < 3.



Complexity on the shift

Theorem. (Todor&evi¢-V) There is no meaningful characterization
of Borel graphs with Borel chromatic number at most n, for each
n€{3,...,No}: such graphs form a ¥3-complete set.

(di Prisco-Todor&evi¢-Miller) Assume that B C [N]N is a Borel set,
and for some Gs-independent Borel set B’, for each x € B there is
n with S"(x) € B’. Call such B’ and independent hitting set.Then
x8(Ys | B) < 3.

Aset S C @ is called non-dominating if there is an f_e [N]"
such that for each g € S we have [{n: g(n) < f(n)}| = No.
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Complexity on the shift

Theorem. (Todor&evi¢-V) There is no meaningful characterization
of Borel graphs with Borel chromatic number at most n, for each
n€{3,...,No}: such graphs form a ¥3-complete set.

(di Prisco-Todor&evi¢-Miller) Assume that [N]N is a Borel set,
and for some Gs-independent Borel set B’, for each x € B there is
n with S"(x) € B’. Call such B’ and independent hitting set.Then
x8(9s | B) < 3.

A set S C [N]N is called non-dominating if there is an f € [N]N
such that for each g € S we have [{n: g(n) < f(n)}| = No.

Non-dominating Borel sets admit an independent hitting set.
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Complexity on the shift @\M

Theorem. (Todorcewc V) There is no meaningful characterization
of Borel graphs with Borel chromatic number at most n, for each
n€{3,...,No}: such graphs form a ¥3-complete set.

(di Prisco-Todor&evi¢-Miller) Assume that B C [N]N is a Borel set,
and for some Gs-independent Borel set B’, for each x € B there is
n with §"(x) € B’. Call such B" and independent hitting set. Then
x8(Ys | B) < 3.

A set S C [N]N is called non-dominating if there is an f € [N]N
such that for each g € S we have [{n: g(n) < f(n)}| = No.

Non-dominating Borel sets admit an independent hitting set.

Theorem. If a Borel coloring problem is solvable on
non-dominating Borel sets, and not solvable on [N]N, then the
Borel subgraphs of Gs on which it is solvable form a ¥ 1-complete.




Shift and determinacy

Theorem. (B-C-G-G-R-V) Let H be a locally countable Borel

graph. Then we have - eel .
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Shift and determinacy

Theorem. (B-C-G-G-R-V) Let H be a locally countable Borel
graph. Then we have

Xwai(H) >3 = xs(Hom(Ts3,H)) > 3.

xs(H) <3 = xg(Hom(Ts3,H)) <3.
ccy Ty e = Ty



Shift and determinacy

Theorem. (B-C-G-G-R-V) Let H be a locally countable Borel
graph. Then we have

Xwai(H) >3 = xs(Hom(T3, H)) > 3.

x8(H) <3 = xs(Hom(T3,H)) <3.

Thus, <7 %6 (6-5 ‘\6> <3
mIf BC N j dominating then
XB(Hom( T3> S 3, c/
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Shift and determinacy

Theorem. (B-C-G-G-R-V) Let H be a locally countable Borel
graph. Then we have

Xwai(H) >3 = xs(Hom(T3,H)) > 3.
—=J

x8(H) <3 =/xs(Hom(T3,H)) <3.

Thus,

m If B C [N]N is non-dominating then
xg(Hom(T3,Gs | B)) 93,
m xg(Hom(T3,Gs)) = 4.



Shift and determinacy

Theorem. (B-C-G-G-R-V) Let H be a locally countable Borel
graph. Then we have

H) >3 = XB(HOm(T3,7'L!) > 3.

ve(H) <3 = xg(Hom(Ts, M) <3. AL

Thus, ‘%
m If B C [N]N is non-dominating then >

XB(Hom(T3,Q5 [ B)) S 3, \
| | XB(Hom( T3,g5)) =4,

Theorem. 3-regular acyclic Borel graphs with Borel chromatic
number < 3 form a ¥3-complete set.



Marks' method




Toasts

Let G be a locally countable Borel graph and k. A k-toast is a
sequence of Borel set By C By C --- with

m U, Bi = V(G),
m G [ B; has finite connected components,

m if 5; # S; are connected components of some G [ B; and
G | B; then the distance of their boundaries is at least k. 5




Toasts

Theorem. Let / be odd. Then a k-toastable acyclic Borel graph

admits a_Borel homomorphism into C; for every large enough k.

Cx




Toasts and non-dominating sets

Theorem. Let B C [N]N be non-dominating. Then Gs | B is
k-toastable for each k.




Toasts and non-dominating sets

Theorem. Let B C [N]N be non-dominating. Then Gs | B is
k-toastable for each k.

Theorem. Toastable subgraphs of Gs form a ¥ 1-complete set.




Hell-Neset¥il

Theorem. (Hell-Nesetfil) Let H be a finite graph. Deciding
whether a finite graph G admits a homomorphism into H is
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Hell-Neset¥il

Theorem. (Hell-Nesetfil) Let H be a finite graph. Deciding
whether a finite graph G admits a homomorphism into H is
¥ 1-complete.

Theorem. (Thornton) Let H be a finite graph. The Borel graphs
that admit a Borel homomorphism to H form a ¥3-complete set,
unless H is bipartite, in which case this set is 1.



Hell-Neset¥il

Theorem. (Hell-Nesetfil) Let H be a finite graph. Deciding
whether a finite graph G admits a homomorphism into H is
¥ 1-complete.

Theorem. (Thornton) Let H be a finite graph. The Borel graphs
that admit a Borel homomorphism to H form a ¥3-complete set,
unless H is bipartite, in which case this set is 1.

Theorem. Assume that H contains an odd cycle. Then Borel
subgraphs of Gs that admit a Borel homomorphism to H form a

Z%—complete set. /
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Hell-Neset¥il

Theorem. (Hell-Nesetfil) Let H be a finite graph. Deciding
whether a finite graph G admits a homomorphism into H is
¥ 1-complete.
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Theorem. Assume that H contains an odd cycle. Then Borel
subgraphs of Gs that admit a Borel homomorphism to H form a
¥ 1-complete set.

Theorem. (C-M-S-V) There is a Borel graph L with
xg(G) >2 < L<gg.
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Hell-Neset¥il

Theorem. (Hell-Nesetfil) Let H be a finite graph. Deciding
whether a finite graph G admits a homomorphism into H is
¥ 1-complete.

Theorem. (Thornton) Let H be a finite graph. The Borel graphs
that admit a Borel homomorphism to H form a ¥3-complete set,
unless H is bipartite, in which case this set is 1.

Theorem. Assume that H contains an odd cycle. Then Borel
subgraphs of Gs that admit a Borel homomorphism to H form a
¥ 1-complete set.

Theorem. (C-M-S-V) There is a Borel graph L with
x8(G) >2 <= L <g G.The Borel graphs that admit a Borel
homomorphism to a bipartite graph form a M} set.

Combining the above theorems, we obtain a new, algebra-free
strengthening of Thornton's result.



Open questions

m Is the collection of compact free subshifts oféZ”Z?*Z?i with
Borel chromatic number < 3 also 2>3-complete?™—




Open questions

m s the collection of compact free subshifts of 242*42*%2 with
Borel chromatic number < 3 also Z%—complete?

m Is toastability ¥3-complete on bounded degree acyclic Borel
graphs?




Open questions

m Is the collection of compact free subshifts of 242*42*22 with
Borel chromatic number < 3 also Z%—complete?

m Is toastability ¥3-complete on bounded degree acyclic Borel
graphs?
m What are the Borel CSP’s that are solvable from toasts?
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Thank you for your attention!



